Local frequency and envelope estimation by Teager-Kaiser energy operators in white-light scanning interferometry.

نویسندگان

  • F Salzenstein
  • P Montgomery
  • A O Boudraa
چکیده

In this work, a new method for surface extraction in white light scanning interferometry (WLSI) is introduced. The proposed extraction scheme is based on the Teager-Kaiser energy operator and its extended versions. This non-linear class of operators is helpful to extract the local instantaneous envelope and frequency of any narrow band AM-FM signal. Namely, the combination of the envelope and frequency information, allows effective surface extraction by an iterative re-estimation of the phase in association with a new correlation technique, based on a recent TK cross-energy operator. Through the experiments, it is shown that the proposed method produces substantially effective results in term of surface extraction compared to the peak fringe scanning technique, the five step phase shifting algorithm and the continuous wavelet transform based method. In addition, the results obtained show the robustness of the proposed method to noise and to the fluctuations of the carrier frequency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Teager-Kaiser Energy and Higher-Order Operators in White-Light Interference Microscopy for Surface Shape Measurement

In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, d...

متن کامل

Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm

This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...

متن کامل

A new class of multi-dimensional Teager-Kaiser and higher order operators based on directional derivatives

This work aims at introducing some energy operators linked to Teager-Kaiser energy operator (TKEO) (Kaiser in On a simple algorithm to calculate the energy of a signal, pp 381–384, 1990), its associated higher order versions and expanding them to multidimensional signals. These operators are very useful for analysing oscillatory signals with time-varying amplitude and frequency (AM–FM). We firs...

متن کامل

Generalized Higher Order Energy Based Instantaneous Amplitude and Frequency Estimation and Their Applications to Power Disturbance Detection

The instantaneous amplitude (IA) based on the higher order differential energy operator is proposed. And its general form for arbitrary order is also proposed. The various definitions of the IA and the instantaneous frequency (IF) estimators are considered. The IA and IF estimators based on the energy operators need less computational cost than the conventional IF and IA estimators exploiting t...

متن کامل

Use of the Teager-Kaiser energy operator for condition monitoring of a wind turbine gearbox

This paper deals with the condition monitoring of a wind turbine gearbox under varying operating conditions, which cause nonstationarity. The gearbox vibration signals are decomposed into a set of monocomponent signals using the Empirical Mode Decomposition (EMD) method. The Teager-Kaiser Energy Operator (TKEO) in combination with an energy separation method is also presented as an alternative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 22 15  شماره 

صفحات  -

تاریخ انتشار 2014